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Supplementary Methods 

All analyses were performed according to the REMARK recommendations for tumor marker studiesA. 

 A respective diagram of the complete analytical strategy and the flow of patients through the study, 

including the number of patients included in each stage of the analysis is given in Supplementary 

Figure S1. The analyses were performed using Bioconductor (http://www.bioconductor.org/) and the 

R software environment (http://www.r-project.org/) and SPSS version 17.0. The genefu package was 

used for implementation of published gene signatures (http://www.bioconductor.org  

/packages/release/bioc/html/genefu.html). Fishers exact test was applied for the analysis of 

associations between categorical parameters. All reported P values are two sided and P values of less 

than 0.05 were considered to indicate a significant result.  

 

 

1. Assembly of microarray data:  

To assemble a highly homogeneous dataset of microarrays of triple negative breast cancers we used 

(i) only one single array platform (Affymetrix U133A and U133Plus2) and (ii) included only samples 

defined as triple negative by a consistent method based on the gene expression itself of ER, PR, and 

HER2 as previously describedB,C. For a reasonable sample size pooling datasets was necessary. A 

major concern of this procedure are systematic technical differences between individual datasets 

("batch effects"). Many adaption methods as e.g. Z-normalization often do not eliminate but rather 

blur such effects. Thus we applied two further strategies to cope with this problem. First, we 

rigorously selected only highly comparable datasets for the finding cohort. Second, we controlled for 

biased genes which still show associations with the dataset vector. These two strategies are 

described below: 

Affymetrix microarray data from 28 datasets encompassing a total of n=3488 primary breast cancers 

were assembled. Expression data were analyzed using the MAS5.0 algorithmD of the affy packageE of 

http://www.bioconductor.org/
http://www.r-project.org/
http://www.bioconductor.org/
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the Bioconductor software projectF. Subsequently data were log2-transformed, median-centered 

across arrays, and the expression values of all the probesets from the U133A array were multiplied 

by a scale factor S so that the magnitude (sum of the squares of the values) equals one. Triple 

negative breast cancers (TNBC, n=579) were identified based on gene expression of ER, PgR, and 

HER2 on microarray as described previouslyC. Gene expression data of these 579 TNBC have been 

deposited into the GEO database (accession number GSE31519). To select only comparable samples 

for the finding cohort a metric to compare different datasets was developed. We derived a simple 

comparability metric C from the sum of the squared differences of the mean (μ) within a specific 

dataset and among all datasets, respectively, normalized by the standard deviation (σ) calculated for 

all genes (g) on the array: 

            
                       

         
 

 
 

   

 

As shown in Supplementary Figure S2 all datasets were sorted according to this metric and those 15 

datasets with lowest values (norm. C ≤ 0.03; see also Suppl. Figure S16) encompassing n=394 samples 

selected as finding cohort-A (Supplementary Figure S2). The excluded datasets encompassing n=185 

samples were withhold as validation cohort-B (Supplementary Figure S1). 

Since the number of patients with follow up in the validation cohort-B revealed as too small (n=30) to 

validate the final prognostic predictor an additional  independent validation cohort-CG was also 

analyzed for validation. However, this cohort-C was not available and thus never touched during the 

preceding analysis steps (Supplementary Figure S1). Clinical data of all three cohorts are given in 

Table 1. 

 

2. Building of metagenes for principal molecular phenotypes among TNBC 

High feature to sample ratio is one of the most severe limitations of genomic profiling methods 

leading to an inflation of α-valuesH. Therefore, unsupervised clustering was applied for feature 

reduction based on the assumption that the expression of a large number of genes is highly inter-



Suppl_Methods_page_S-3 
 

dependent. This dependence can be attributed to the expression of sets of genes in different cell 

types in the sample or to differentiation steps and pathways associated with specific expression 

profiles. The command line version of the CLUSTER 3.0 program was applied using pairwise single-

linkage and Pearson correlation as distance metric (available at http://bonsai.ims.u-

tokyo.ac.jp/~mdehoon/software/cluster).  As described previously, genes which did not show a 

correlation with other genes above a certain threshold (0.5) were suspected to represent noise and 

therefore discarded from further analysisI. To build "metagenes" for the principal vectors we selected 

only those clusters which contained at least 10 elements and a minimal average correlation of 0.7 or 

25 elements with a correlation of 0.6, respectively. This strategy rediscovered previously described 

gene clusters for basal-like genesJ, an apocrine/androgen receptor signalling signatureK,L, a stromal 

signatureM,N, the claudin-CD24 signatureO,P as well as several gene clusters related different types of 

immune and blood cellsI,J,Q,R,S,T,U,. A higher cutoff of 0.8 for correlation was applied to differentiate 

these individual subclusters associated with distinct types of immune cells. In addition we included 

four metagenes for clusters containing less than 10 elements but which are well known for their 

biological phenotype, namely angiogenesisV,S , adipocytesJ, inflammationW,X,Y, and a cluster of HOXA 

genes (Table 2 and Figure 1). Metagene expression values were determined by calculating the mean 

of the normalized expression values of all probesets in the respective cluster as previously describedI. 

A list of all 355 applied Affymetrix probesets is given in Supplementary Table S7.  

 

3. Control for biased probesets and metagenes 

We aimed to control for metagenes which display a possible bias related to technical differences 

between datasets. As a metric for the dependence of each individual probeset on the dataset vector 

we used the standard Kruskal-Wallis rank test. The distribution of the rank sum statistics for all 

22,283 probesets from the U133A array in the finding cohort-A of n=394 samples is shown in 

Supplementary Figure S17A. We controlled for this dataset bias throughout the analysis by tagging 

each of the 22,283 Affy probesets with its Kruskal stat value. Thereby the influence of dataset bias 
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was monitored during unsupervised analyses. Biased probesets tend to cluster together and can 

easily be detected by their tagged Kruskal stats. The median Kruskal-Wallis rank sum statistic and 

inter quartile range (IQR) of the probesets of the 16 metagenes from Table 2 are presented in 

Supplementary Figure S17B. The values for each individual probeset are given in Supplementary 

Table S7. Only the Stroma and Hemoglobin metagenes display a high bias between datasets. This 

effect originates from the inclusion of two datasets which were obtained from fine needle aspiration 

(FNA) samples (Supplementary Figure S3). Such samples generally contain relative high amounts of 

blood and low amounts of stromal tissue. Thus to avoid a dataset bias in all analyses concerning the 

Stroma and Hemoglobin metagenes four datasets with FNA and core biopsies were excluded and 

only datasets containing surgical biopsy samples (n=365 and n=130 in the finding and validation 

cohorts-A and -B, respectively) were used (Supplementary Table S1). 

 

4. Control for platform bias between U133A and U133Plus2.0 Affymetrix arrays 

A platform bias between U133A and U133Plus2.0 arrays has been reported in a previous study by 

Symmans et al. 2010Z for SET index gene signature (Suppl. Fig. S3 in the Supplementary Appendix of 

Symmans et al) and a correction factor was used in this study to adjust for this bias. In contrast, no 

platform bias was observed for ESR1 and HER2 gene expression in the same study (Suppl. Fig. S4 of 

Symmans et al.). We obtained similar results when we compared the distribution of ESR1, PgR, and 

HER2 gene expression from samples profiled on either U133A or U133Plus2.0 arrays in our full cohort 

of 3488 samples. As demonstrated in Supplementary Figure S18A no platform bias was observed. We 

have also observed a high consistency of cutoffs for ER, PgR, and HER2 genes in different datasets 

previouslyC. Therefore the primary selection of the triple negative cohort of 579 samples is not 

influenced by the type of array used in the respective individual studies. 118 (20.4%) of the 579 TNBC 

were profiled on U133 Plus 2.0 arrays, but only 21 (5.3%) of the 394 samples from the finding 

cohort-A. The bias between the two different U133 platforms described in the report by Symmans et 

al is not systematic but only effects certain probesets since no effect on ESR1, PgR, and HER2 was 
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observed. Thus any adaption has to be done on a gene by gene (or metagene) basis. Therefore we 

checked the inter-platform agreement as well as the inter-laboratory agreement of the metagenes 

analyzed in our study using the raw data from a 2x2  factorial study from the Symmans et al 

publication (GEO accession number GSE17700). As shown in Supplementary Figure S18B we 

observed good correlation for both types of agreement and no systematic type of bias was detected. 

Therefore no platform correction was performed for the metagenes analyzed in our study. 

 

5. Survival analyses  

Follow up data were available for 2348 of the total 3488 samples and 327 of the 579 TNBC samples 

(given lack of follow up data in 12 datasets, see Supplementary Table S1). All survival intervals were 

measured from the time of surgery to the distinct survival endpoint used in the individual datasets. 

For 11 datasets relapse free survival (RFS) was used as an endpoint (n=1429 total, n=167 TNBC) while 

for 6 dataset only distant metastasis free survival (DMFS) was available. Thus any local recurrence 

events are missing from these 6 datasets. In the conduct of the presented analysis event free survival 

(EFS) was calculated as preferentially corresponding to the RFS endpoint, but measured with respect 

to the DMFS endpoint if RFS was not available. We have previously shownC that the effect of using 

these different endpoints was rather small in the overall dataset. However, all results from survival 

analyses were verified by examining the effect of the different endpoints in stratified analyses. 

Follow up data for those women in whom the envisaged end point was not reached were censored 

as of the last follow-up date or at 120 months. Subjects with missing values were excluded from the 

analyses. We constructed Kaplan-Meier curves and used the log-rank test to determine the 

univariate significance of the variables. Cox regression analysis was applied to analyze the univariate 

hazard ratio of individual metagenes as continous factors. A Cox proportional-hazards model was 

used to simultaneously examine the effects of multiple covariates on survival. The effect of each 

individual variable was assessed with the use of the Wald test and described by the hazard ratio, with 
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a 95 percent confidence interval (95% CI). In stepwise backward selection models variables were 

excluded using P=0.05 as cutoff.  

 

6. Development of a prognostic predictor from the IL-8 and B-Cell metagenes in the training 

cohort-A 

As shown in Suppl. Figures S16 and S17 we used both an unsupervised and a supervised approach 

(next section) to develop prognostic predictors for TNBC. In the unsupervised approach three 

metagenes (IL-8, Histone, and B-Cell metagenes) revealed independent prognostic value in 

multivariate cox regression in the finding cohort-A. Since IL-8 and Histone metagenes are positively 

correlated and both inversely related to the B-Cell metagene we aimed for constructing a simple 

prognostic predictor for TNBC from a combination of the IL-8 and B-Cell metagenes. Cutoffs for 

dichotomizing of the IL-8 and B-Cell metagene were optimized stepwise (0.001) in the finding 

cohort-A as shown in Suppl. Figure S19. Those cutoffs were selected which displayed (i) high 

significance in univariate Cox regression concurrently with (ii) mostly equally sized sample groups.  

Combination of the two dichotomized metagene variables were applied to the finding cohort-A to 

obtain a binary prognostic predictor. TNBC patients with tumors displaying both a high expression of 

the B-Cell metagene and low expression of the IL8 metagene displayed a superior prognosis 

compared to the remaining samples (Figure 4). 

 

7. Supervised prognostic signature generation by SAM 

In an independent approach we also applied a supervised classification using all genes on the 

Affymetrix microarrays to identify a prognostic gene expression signature (right part of the diagram 

in Supplementary Figure S13). The Cox score option of Significance Analysis of Microarrays (SAM)AA 

using the R-package samr was applied to the finding cohort-A (297 TNBC samples with follow up) as 

training set. A delta value of 0.3 resulted in 235 probesets associated with poor prognosis and 29 

probesets associated with good prognosis with a median false discovery rate of 25%. A more 
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stringent delta value of 0.5 resulted in 26 probesets associated with poor prognosis with a median 

false discovery rate < 3.5% (no probesets associated with good prognosis were identified using this 

higher stringency. The 235 and 29 probesets, respectively, are listed in Supplementary Table S8. This 

Table also gives information which 26 probesets were obtained by higher stringency. Interestingly, 

the two probesets of IL-8 on the Affymetrix array are ranked at position 1 and 4 in the poor prognosis 

probeset list. On the other hand, most of the 29 probesets in the good prognosis probeset list are 

associated with immune cells.  

Supervised prognostic signatures were derived as a compound covariate predictor using each 

probesets' expression value and the respective SAM-Score as a weight. The results of Kaplan-Meier 

analysis using a median split of the cohorts according to the supervised prognostic signatures for 

both the 264 probesets signature (lower stringency) and the 26 probeset signature (higher 

stringency) are given in Supplementary Figure S14 A-C and E-G, respectively, for all three cohorts.  

As expected the 264-SAM-derived-probes prognostic signature had a high prognostic value in the 

training-set (Supplementary Figure S14A). In contrast, only a trend towards a better prognosis was 

observed in the validation cohorts-B and –C (Supplementary Figures S14B and S14C). When the 264-

SAM-derived-probes prognostic signature score as a continous variable was clustered together with 

the metagenes from Figure 1 the highest correlation was observed to the cluster containing IL-8, 

Histone, and VEGF metagenes in both finding cohort-A (Supplementary Figure S14D) and validation 

cohorts (not shown).  

The prognostic value of the signature derived from higher stringency (26-SAM-derived-probes) was 

analysed in Suppl. Figure S14 panels (E), (F), and (G), respectively. A significant difference in 

prognosis  was found for validation cohort B (panel F) but only a trend for validation cohort C (panel 

G). The cluster analysis in panel (H) demonstrates that this 26-SAM-derived-probes signature 

displayed the highest correlation to the IL-8 metagene (the same result was obtained using validation 

cohorts–B and –C; not shown).  
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8. Centroid-based definition of Molecular subtypes 

We applied a recently published implementation of different variants of the centroid method to 

assign breast cancer samples to a molecular subtypeBB. Detailed information and corresponding R-

code can be downloaded from the authors of this study at: 

http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid

%20Correlations.pdf 

For the results presented in Supplementary Table S6 we performed Spearman's rank correlations on 

all probes both with centering and without centering using the centroids according to Hu et al. CC 

downloaded from  

http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/Hu306.centroids.txt 

The analyses were performed independently in seven larger datasets (Frankfurt, Mainz, NewYork, 

Stockholm, Transbig, Uppsala, Rotterdam) to assign a total of 1364 breast cancer samples to a 

molecular subtype. Subsequently the resulting subtype definitions of the 172 TNBC samples from 

these datasets were compared to the BLBC vs. Non-BLBC definition deduced from the distribution of 

the Basal-like metagene. 

In addition, the analysis was also performed using the complete cohorts-A and –B of 579 TNBC 

samples only (without Non-TNBC subtypes). In this case only the variant of the method without 

centering was applied since centering of a complete ER negative cohort results in distortion of the 

data as previously shownDD,C. 

 

9. Definition of molecular subtypes based on bimodal metagene distributions 

Cutoffs for bimodally expressed metagenes (Basal-like, Apocrine, Claudin-CD24) were derived from 

fitting a mixture of two normal gaussian distributions to the observed distributions by maximum 

http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid%20Correlations.pdf
http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/ExpressionSet%20Nearest%20Centroid%20Correlations.pdf
http://rock.icr.ac.uk/collaborations/Mackay/centroid.correlations.Eset/Hu306.centroids.txt
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likelihood optimization using the optim function in R as described by Venables and RipleyEE. The 

resulting cutoffs are shown in Supplementary Figure 3 (Basal-like) and Supplementary Figure S6B 

(Apocrine, Claudin-CD24). These cutoff values were subsequently used to categorize TNBC samples 

into the following subgroups: Basal-like, molecular-Apocrine, and Claudin-Low. Any samples classified 

to more than one group using the distribution-derived cutoff values were assigned as 

"unclassified/ambigous". Among the 394 TNBC samples from the finding cohort-A we detected 249 

Basal-like (63.2%), 65 Molecular-Apocrine (16.5%), and 25 Claudin-Low (6.3%) samples by this 

method. 55 samples (14.0%) were assigned to the "unclassified/ambigous" group. The relationship of 

the three metagenes is demonstrated in the scatter plot in Supplementary Figure S6A. Most of the 

samples classified by this method as Molecular-Apocrine or Claudin-Low were either assigned to the 

"unclassified" or the "basal-like" group when the centroid method was applied (60-80% depending 

on the specific variant of the method as given in the preceding section above). 

High expression of Adipocyte markers and low expression of proliferation markers are features of 

both normal tissue as well as the so called "normal-like" subtype of breast cancer. Using the above 

method we were not able to discriminate a "normal-like" subtype since the Adipocyte metagene and 

the Proliferation metagene did not display bimodal distributions. Similarily immune metagenes 

displayed a continous distribution of expression values suggesting that these markers rather describe 

mixtures of cells than subtypes of distinct origin. 

 

10. Immunohistochemical analysis 

To analyze the cellular source of expression in samples which show a high expression of the B-cell 

and IL-8 metagenes we performed immunohistochemistry using specific antibodies. CD20 (clone B-

Ly1, Dianova, Hamburg, Germany) was used as marker for B lymphocytes. A polyclonal IL-8 (AF-208-

NA) was obtained from R&D Systems (Minneapolis, MN). Briefly, paraffin sections (2 μm) were 

mounted on Superfrost Plus slides, dewaxed in xylene and rehydrated through graduated ethanol to 
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water. Antigens were retrieved by microwaving sections in 1 mM EDTA (pH 8.0) for 20 min at 800 W. 

Blocking was performed using antibody dilution buffer (DCSDiagnostics, Hamburg, Germany) at room 

temperature for 15 min. Subsequently, antibodies were diluted 1:100 individually in this buffer. 

Sections were incubated with antibodies for 1 h at room temperature. For negative controls, the 

primary antibodies were replaced with phosphate-buffered saline. For secondary antibody 

incubations and detection, the Dako REAL Detection System Alkaline Phosphatase/RED (Dako, 

Glostrup, Denmark) was used following the protocol of the supplier and sections were 

counterstained with Mayer’s hematoxylin. 

 

11. Relationship of B-Cell and IL-8 metagenes to the medullary subtype of TNBC 

The good prognosis of TNBC with high lymphocyte content is in line with properties of medullary 

breast cancer, a tumor subtype with high amounts of immune cell infiltrates and favourable 

prognosis. Since this subtype represents <3% of all breast cancers it could account only for a tiny 

minority of TNBC in our dataset. Nevertheless, we analyzed a publicly available microarray datasetFF 

of medullary and ductal TNBC for expression of B-Cell and IL-8 metagenes. As shown in Suppl. Figure 

S20 the expression of the metagenes largely overlap between the two histologically defined cancer 

subtypes and thus the prognostic value of the predictor cannot be explained by the identification 

medullary breast cancer samples alone.  

 

12. Relationship of the B-Cell/IL-8 prognostic predictor to proliferation in TNBC 

As shown in Supplementary Figure S21 no difference in the expression of the proliferation metagene 

was observed when TNBC samples were stratified according to the prognostic predictor based on 

high expression of the B-Cell metagene and low expression of the IL-8 metagene.  
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13. Relationship of previously published gene signatures to the metagenes detected within 

TNBC. 

The correlation of several published gene signatures with the metagenes discovered within the pure 

TNBC cohort was analyzed by calculating the Pearson correlation coefficient between signature 

scores in the finding cohort of TNBC. The following gene signatures were included in this analysis: 

Recurrence scoreGG, genomic grade indexHH, Amsterdam signatureII, wound response signatureJJ, 7-

gene immune response moduleKK, stroma derived prognostic predictorLL, and a medullary like 

signatureG. The genefu R-packageMM,NN was used to calculate signature score as continuous variables. 

The correlations between these gene signatures and all 16 identified metagenes in TNBC were 

visualized through hierarchical clustering. 
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Supplementary Figure S16: Selection methods for comparable Affymetrix datasets  

We derived a simple comparability metric C from the sum of the squared differences of the mean (μ) 

within a specific dataset and among all datasets, respectively, normalized by the standard deviation 

(σ) calculated for all genes (g) on the array: 

             
                       

         
 

 
 

   

 

We also considered a metric without normalizing by the standard deviation: 

                                         
 

 

   

 

and using the mean of the means among datasets instead of the global mean: 

                                
             
 
   

 
  

 

   

 

In the above figure the results of all three methods were compared on a normalized scale. An 

increase was observed for all three metrics between 0.02 and 0.03. The selected cutoff of C ≤ 0.03 

resulted in the inclusion of 15 datasets encompassing n=394 TNBC samples in the finding cohort-A. 

The excluded datasets encompassing n=185 samples were withhold as validation cohort-B. 
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Supplementary Figure S17: Analysis of metagenes for potential dataset bias 

A) The standard Kruskal-Wallis rank test was used for the dependence of each individual 

probeset to the vector of the 15 different datasets in the finding cohort-A of n=394 samples. 

The distribution of the rank sum statistics for all 22,283 probesets from the U133A array is 

shown. 

B)  Median Kruskal-Wallis rank sum statistic (horizontal lines) and inter quartile range (IQR, 

vertical lines) of the probesets from the 16 metagenes are shown. Only the Stroma and 

Hemoglobin metagenes display a high bias between datasets. This effect originates from the 

inclusion of two datasets obtained from FNA samples which contain high amounts of blood 

and low amounts of stromal tissue. 
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Supplementary Figure S18: Analysis of platform bias between U133A and U133 Plus 2.0 

Affymetrix arrays 

A) Distribution of gene expression of ESR1 (probeset 205225_at), PgR (probeset 208305_at), 

and HER2 (probeset 216836_s_at) among 3488 breast cancer samples profiled either on 

Affymetrix U133A (blue) or U133 Plus 2.0 (orange) arrays. Similar distributions and cutoff 

values were obtained for both platforms. 

B) The inter-platform agreement for the 16 metagenes from our study between Affymetrix 

U133A and U133 Plus 2.0 arrays was analyzed using the raw data from a 2x2  factorial study 

from the Symmans et al. 2010 J Clin Oncol. 28:4111 (GEO accession number GSE17700). A 

good correlation between the two platforms was observed and a systematic bias affecting all 

metagenes was not detected. 

C) The inter-laboratory agreement between two different laboratories (MDA and JBI) for the 16 

metagenes from our study was analyzed using the raw data from a 2x2  factorial study from 

the Symmans et al. 2010 J Clin Oncol. 28:4111 (GEO accession number GSE17700). A good 

correlation between the two laboratories was observed and a systematic bias affecting all 

metagenes was not detected. 

 



 
 

 
 

 
 
Supplementary Figure S19: Selection of cutoffs for dichotomizing of the IL-8 and B-Cell meta-

genes in the finding cohort-A 

Univariate Cox regression analysis of event free survival was performed in the finding cohort-A with 

dichotomized IL-8 (in A) and B-Cell (in B) metagenes, respectively. The results of different cutoff 

values in steps of 0.001 are shown. In each figure the upper panel shows the number of samples in 

the two groups according to the used cutoff. The middle and lower panels shows the P-Value and 

hazard ratio of the respective univariate Cox regression according to the applied cutoff. 

Those cutoffs were selected which concurrently displayed (i) a low P-Value and (ii) mostly equally 

sized sample groups. The cutoffs chosen for all further analyses are marked by red arrows (B-Cell 

metagene cutoff 0.005 (A) and IL-8 metagene cutoff -0.001 (B), respectively). 
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Supplementary Figure S20: Distribution of the IL-8 and B-Cell metagenes in TNBC of the 

medullary and non-medullary subtype 

Affymetrix expression data from 39 triple negative breast cancers of the study of Bertucci et al. (Cancer Res. 

2006; 66(9): 4636-44) on medullary breast cancer were analyzed. Based on histopatholocigal analysis 22 of 

these samples were defined as typical medullary breast cancer in the original study and 17 as ductal breast 

cancer. All probesets of the IL-8 and B-Cell metagenes were available from the Supplementary Data of this 

study. Shown is the distribution of the metagene expression values of IL-8 (in A) and B-Cell (in B) metagenes 

from the for ductal breast cancer (blue) and medullary breast cancer (green) samples. 

While the expression of the B-Cell metagene is slightly higher in the medullary cohort no clear difference was 

observed in IL-8 and B-Cell metagene expression between the two histopathological subtypes.  

(Note that since no complete Affymetrix CEL file data were available for this dataset the scale of the metagene values is not 

the same as in TNBC cohorts–A,-B,-C, and the cutoff values cannot be directly adapted.) 
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Supplementary Figure S21: Comparison of the proliferative activity of TNBC stratified according 

to the combined B-Cell/IL-8 metagenes in cohort-A 

The distribution of the proliferation metagenes is shown for TNBC samples stratified according the combined B-

Cell/IL-8 metagene with samples displaying either both high B-Cell and low IL-8 metagene expression in blue 

and the remaining samples in red, respectively. No difference in the expression of the proliferation metagene is 

observed between these two groups. Similar results were obtained in the validation cohorts (not shown). 
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